

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Composite semiconductor H2WO4·H2O/AgCl as an efficient and stable photocatalyst under visible light

Peng Wang, Baibiao Huang*, Xiaoyang Zhang, Xiaoyan Qin, Ying Dai, Hao Jin, Jiyong Wei and Myung-Hwan Whangbo

> *P. Wang, Prof. Dr. B. Huang*, Prof. X. Zhang, X. Qin, Dr. J. Wei State Key Lab of Crystal Materials Shandong University Jinan 250100, China E-mail: bbhuang@sdu.edu.cn*

> > *Prof. Dr. Y. Dai, H. Jin School of Physics, Shandong University Jinan 250100, China*

Prof. Dr. M.-H. Whangbo Department of Chemistry North Carolina State University Raleigh, North Carolina 27695-8204, USA

Estimation of the VB and CB edges of H2WO4·H2O

Electronegativity is an intrinsic property, which measures the degree of difficulty for an electron to escape from atomic species. On the basis of density functional theory, Parr and coworkers ^[1] defined the electronegativity of a neutral atom as the negative of the chemical potential in the ground state:

$$
c = -m = -\left(\frac{\partial E}{\partial N}\right)_v.
$$
 (1)

where *E* and *N* are the ground-state electronic energy and the number of electrons, respectively. In terms of energy differences, Eq. 1 can be rewritten as

$$
\mathbf{c} = -\left(\frac{\partial E}{\partial N}\right)_v = \frac{E(N+1) - E(N) + E(N) - E(N-1)}{2} \approx \frac{I + A}{2}.\tag{2}
$$

where *I* and *A* represent the ionization potential (IP) and the electron affinity (EA) of the atom, respectively. Thus, Eq. 1 is equivalent to the Mulliken's definition of electronegativity.^[2]

When the atoms are brought together to form a compound, charges will redistribute until the electrochemical potentials of the compound reach the equilibrium. On the basis of bond length arguments, Sanderson postulated that the electronegativity of a compound *ccomp* is given by the geometric mean of the electronegativities of the constituent atoms, $^{[3]}$ that is,

$$
\mathbf{C}_{comp} = \sqrt[N]{\mathbf{C}_1^r \mathbf{C}_2^s \cdots \mathbf{C}_{n-1}^p \mathbf{C}_n^q}.
$$
 (3)

where c_n , *n* and *N* are the electronegativity of the constituent atom, the number of

species and the total number of atoms in the compound, respectively. The superscripts *r*, *s*, *p* and *q* refer to the numbers of the atoms 1, 2, n-1 and n, respectively in the molecule, so that $r + s + ... + p + q = N$.

The CB edge of a semiconductor at the point of zero charge (E_{CR}^0) is empirically expressed as $[4-6]$

$$
E_{CB}^{0} = \mathbf{c}_{comp} - 2.303RT \cdot (pH_{ZPC} - pH) / F - E^{e} - \frac{1}{2} E_{g}.
$$
 (4)

where *R* is the gas constant, *T* is temperature, and *F* is the Faraday constant. E_g and E^e are the band gap of the semiconductor and the energy of free electrons on the hydrogen scale (i.e., $E^e = -4.5$ eV). Under the reasonable assumption that the solution's pH value at the zero point of charge, pH_{ZPC} , is very close to the solution's pH value, *pH*, we obtain

$$
E_{CB}^0 \approx E_{CB} \approx \mathbf{c}_{comp} - E^e - \frac{1}{2} E_g. \tag{5}
$$

From its UV/Vis diffuse reflectance spectrum the band gap of $H_2WO_4·H_2O$ is estimated to be 2.92 eV. Thus, from Eq. 5, the CB edge of H_2WO_4 · H_2O is estimated to be -0.394 eV with respect to the normal hydrogen electrode (NHE), and -4.106 eV with respect to the absolute vacuum scale (AVS). Consequently, on the basis of its

band gap (2.92 eV), the VB edge of $H_2WO_4·H_2O$ is determined as 2.506 eV with respect to the NHE, and as -7.026 with respect to the AVS.

According to Morimoto *et al.*,^[7] the CB and VB edges of AgCl are -3.3 eV and -6.6 eV, respectively. The VB and CB edges of AgCl and H_2WO_4 ·H₂O are compared in Figure 1, which shows that the VB and CB edges of $H_2WO_4 \cdot H_2O$ lie lower than those of AgCl, respectively, and that $H_2WO_4·H_2O$ has a smaller band gap than does AgCl.

Figure 1. Comparison of the VB and CB edges of $H_2WO_4H_2O$ and AgCl.

References

[1] R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, *J. Chem. Phys.* **1978**, *68*, 3801-3807.

[2] R. S. Mulliken, *J. Chem. Phys.* **1934**, *2*, 782-793.

[3] R. T. Sanderson, *Chemical Periodicity*, Reinhold, New York **1960**.

[4] S. R. Morrison, *Electrochemistry at Semiconductor and Oxidized Metal Electrodes*, Plenum Press, New York, **1980**.

[5] M. A. Butler, D. S. Ginley, *J. Electrochem. Soc.* **1978**, *125*, 228-232.

[6] Y. Xu, M. Schoonen, Am. Mineral, **2000**, *85*, 543-556.

[7] T. Morimoto, K. Suzuki, M. Torikoshi, T. Kawahara, H. Tada, *Chem. Commun*., **2007**, 4291-4293.