

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Composite semiconductor H₂WO₄·H₂O/AgCl as an efficient and

stable photocatalyst under visible light

Peng Wang, Baibiao Huang*, Xiaoyang Zhang, Xiaoyan Qin, Ying Dai, Hao Jin, Jiyong Wei and Myung-Hwan Whangbo

P. Wang, Prof. Dr. B. Huang*, Prof. X. Zhang, X. Qin, Dr. J. Wei State Key Lab of Crystal Materials Shandong University Jinan 250100, China E-mail: <u>bbhuang@sdu.edu.cn</u>

> Prof. Dr. Y. Dai, H. Jin School of Physics, Shandong University Jinan 250100, China

Prof. Dr. M.-H. Whangbo Department of Chemistry North Carolina State University Raleigh, North Carolina 27695-8204, USA

Estimation of the VB and CB edges of H₂WO₄·H₂O

Electronegativity is an intrinsic property, which measures the degree of difficulty for an electron to escape from atomic species. On the basis of density functional theory, Parr and coworkers ^[1] defined the electronegativity of a neutral atom as the negative of the chemical potential in the ground state:

$$\boldsymbol{c} = -\boldsymbol{m} = -(\frac{\partial E}{\partial N})_{\nu}.$$
 (1)

where E and N are the ground-state electronic energy and the number of electrons, respectively. In terms of energy differences, Eq. 1 can be rewritten as

$$\boldsymbol{c} = -\left(\frac{\partial E}{\partial N}\right)_{\nu} = \frac{E(N+1) - E(N) + E(N) - E(N-1)}{2} \approx \frac{I+A}{2}.$$
 (2)

where I and A represent the ionization potential (IP) and the electron affinity (EA) of the atom, respectively. Thus, Eq. 1 is equivalent to the Mulliken's definition of electronegativity.^[2]

When the atoms are brought together to form a compound, charges will redistribute until the electrochemical potentials of the compound reach the equilibrium. On the basis of bond length arguments, Sanderson postulated that the electronegativity of a compound c_{comp} is given by the geometric mean of the electronegativities of the constituent atoms,^[3] that is,

$$\boldsymbol{c}_{comp} = \sqrt[N]{\boldsymbol{c}_{1}^{r} \boldsymbol{c}_{2}^{s} \cdots \boldsymbol{c}_{n-1}^{p} \boldsymbol{c}_{n}^{q}}.$$
(3)

where c_n , n and N are the electronegativity of the constituent atom, the number of

species and the total number of atoms in the compound, respectively. The superscripts r, s, p and q refer to the numbers of the atoms 1, 2, n-1 and n, respectively in the molecule, so that r + s + ... + p + q = N.

The CB edge of a semiconductor at the point of zero charge (E_{CB}^0) is empirically expressed as ^[4-6]

$$E_{CB}^{0} = \mathbf{c}_{comp} - 2.303RT \cdot (pH_{ZPC} - pH) / F - E^{e} - \frac{1}{2}E_{g}.$$
 (4)

where *R* is the gas constant, *T* is temperature, and *F* is the Faraday constant. E_g and E^e are the band gap of the semiconductor and the energy of free electrons on the hydrogen scale (i.e., $E^e = \sim 4.5$ eV). Under the reasonable assumption that the solution's pH value at the zero point of charge, pH_{ZPC} , is very close to the solution's pH value, *pH*, we obtain

$$E_{CB}^{0} \approx E_{CB} \approx \boldsymbol{c}_{comp} - E^{e} - \frac{1}{2}E_{g}.$$
(5)

From its UV/Vis diffuse reflectance spectrum the band gap of H_2WO_4 · H_2O is estimated to be 2.92 eV. Thus, from Eq. 5, the CB edge of H_2WO_4 · H_2O is estimated to be -0.394 eV with respect to the normal hydrogen electrode (NHE), and -4.106 eV with respect to the absolute vacuum scale (AVS). Consequently, on the basis of its

band gap (2.92 eV), the VB edge of $H_2WO_4 \cdot H_2O$ is determined as 2.506 eV with respect to the NHE, and as -7.026 with respect to the AVS.

According to Morimoto *et al.*,^[7] the CB and VB edges of AgCl are -3.3 eV and -6.6 eV, respectively. The VB and CB edges of AgCl and H_2WO_4 · H_2O are compared in Figure 1, which shows that the VB and CB edges of H_2WO_4 · H_2O lie lower than those of AgCl, respectively, and that H_2WO_4 · H_2O has a smaller band gap than does AgCl.

Figure 1. Comparison of the VB and CB edges of H₂WO₄ H₂O and AgCl.

References

[1] R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 1978, 68, 3801-3807.

[2] R. S. Mulliken, J. Chem. Phys. 1934, 2, 782-793.

[3] R. T. Sanderson, *Chemical Periodicity*, Reinhold, New York 1960.

[4] S. R. Morrison, *Electrochemistry at Semiconductor and Oxidized Metal Electrodes*, Plenum Press, New York, **1980**.

[5] M. A. Butler, D. S. Ginley, J. Electrochem. Soc. 1978, 125, 228-232.

[6] Y. Xu, M. Schoonen, Am. Mineral, 2000, 85, 543-556.

[7] T. Morimoto, K. Suzuki, M. Torikoshi, T. Kawahara, H. Tada, *Chem. Commun.*, **2007**, 4291-4293.